Peer-to-Peer Networks

Chapter 3: Networks, Searching
and Distributed Hash Tables

(Part 2)
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Chord: Performance
G

" Search performance of “pure” Chord O(n)
" Number of nodes is n

" With finger tables, need O(log n) hops to find the
correct node
" Fingers separated by at least 21

" With high probability, distance to target halves at each
step

" In beginning, distance is at most 2™
" Hence, we need at most m hops

" For state information, “pure” Chord has only
successor and predecessor, O(1) state

" For finger tables, need m entries
" Actually, only O(log n) are distinct
" Proof is in the paper

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT

40



To Hash or not to hash?
L

Addressing possible but no searching, because
Hashes H(foo) are used...

Why not store the names un-hashed (,,foo*)?
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Node-ID allocation
G

Node-ID is allocated by hashing the IP-
Address...

- Does this have dis-advantages?

- Advantages, too, may be?
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CAN: Content Addressable ,4

Network
G

" CAN developed at UC Berkeley
" (Ratnasamy, Francis, Handley, Karp, Shenker)

" Originally published in 2001 at Sigcomm
conference(!)

" CANs overlay routing easy to understand
" Paper concentrates more on performance evaluation

" Also discussion on how to improve performance by
tweaking

" CAN project did not have much of a follow-up
" Only overlay was developed, no bigger extensions
" Interestingly enough, the idea is coming back with a twist...
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CAN: Basics

" CAN based on N-dimensional Cartesian coordinate space
" Qur examples: N = 2
* One hash function for each dimension

" Entire space is partitioned amongst all the nodes
" Each node owns a zone in the overall space

" Abstractions provided by CAN:
" store data at points in the space
" route from one point to another

" Point = Node that owns the zone in which the point
(coordinates) is located

" Order in which nodes join is important
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CAN: Partitioning
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CAN: Partitioning
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CAN: Partitioning
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CAN: Partitioning
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CAN: Partitioning

= CAN forms a
d-
dimensional
torus
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CAN: Examples

" Below examples for:
" How to join the network
" How routing tables are managed
" How to store and retrieve values
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CAN: Node Insertion

Discover some
node “|”

already in CAN

—~O
o

New node
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CAN: Node Insertion

New node picks

its coordinates

In space

(P,Q) —

—~O
o

New node

pick random
point in space
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CAN: Node Insertion

| routes to
(p.q), and
discovers that
node | owns

(p.q)

‘/

(P,q)

/V/

A\ 4

\ 4
A\ 4
\ 4

New node
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CAN: Node Insertion

Split |'s zone
in half. New

owns one
half

New
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CAN: Routing Table

That's it. ©
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CAN: Routing &

Greedy Routing: minimize distance to target
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CAN: Storing Values @

node I::insert(K,V) .
a = h(K) d
b = h,(K)

y=b "~ "T"""""~"~"~~-r d)-————-
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CAN: Storing Values @

node I::insert(K,V)

(1) a = h,(K)
b = h (K)

(2) route(K,V) -> (a,b)
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CAN: Storing Values @

node I::insert(K,V)

(1) a = h,(K) d
b = h,(K)

(2) route(K,V) -> (a,b) O (KV)

(3) (a,b) stores (K,V)
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CAN: Retrieving Values @

node J::retrieve(K)
(1) a = h,(K)
b = h_(K)

(2) route “retrieve(K)” to (K,V)

(a,b)
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CAN: Improvements
G

" Possible to increase number of dimensions d
" Small increase in routing table size
- Shorter routing path, more neighbors for fault tolerance

" Multiple realities (= coordinate spaces)
" Use more hash functions
" Similar properties as increased dimensions (yet, not the
same!)
" Routing weighted by round-trip times
" Take into account network topology
" Forward to the “best” neighbor
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CAN: More Improvements
L

" Use well-known landmark servers (e.qg., DNS roots)

" Nodes join CAN in different areas, depending on distance to
landmarks

" Pick points “near” landmark
" |Idea: Geographically close nodes see same landmarks
" Uniform partitioning

" New node splits the largest zone in the neighborhood
instead of the zone of the responsible node
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CAN: Performance
L

= State information at node O(d)
" Number of dimensions is d
" Need two neighbors in all coordinate axis
" Independent of the number of nodes!

" Routing takes O(dn*) hops
" Network has n nodes
" Multiple dimensions (and realities) improve this
" Routing improved by multiple dimensions

" Multiple realities mainly improve availability and
fault tolerance
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Tapestry

GEE——
" Tapestry developed at UC Berkeley(!)

" Different group from CAN developers
" Tapestry developed in 2000, but published in 2004

" Originally only as technical report, 2004 as journal article
= Many follow-up projects on Tapestry

" Example: OceanStore

" Tapestry based on work by Plaxton et al.
" Plaxton network has also been used by Pastry
" Pastry was developed at Microsoft Research and Rice
University
* Difference between Pastry and Tapestry minimal

" Tapestry and Pastry add dynamics and fault tolerance to Plaxton

network
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Tapestry: Plaxton Network
G

" Plaxton network (or Plaxton mesh) based on prefix routing (similar to
IP address allocation)
" Prefix and postfix are functionally identical
" Tapestry originally postfix, now prefix...

" Node ID and object ID hashed with SHA-1
" Expressed as hexadecimal (base 16) numbers (40 digits)
" Base is very important, here we use base 16

" Each node has a neighbor map with multiple levels
" Each level represents a matching prefix up to digit position in ID
" A given level has number of entries equal to the base of ID

III'II

" jth entry in j* level is closest node which starts prefix(N,j-1)+

"= Example: 9th entry of 4th level for node 325AE is the closest node with ID
beginning with 3259
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Tapestry: Routing Mesh
L .

" (Partial) routing mesh for a single node 4227
" Neighbors on higher levels match more digits

;
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Tapestry: Neighbor Map for 4227
L

Level 1 2 3 4 5 6 8
1 1D76 27AB 51E5 6F43
2 43C9 44AF
3
4 4228

* There are actually 16 columns in the map (base 16)
* Normally more (most?) entries would be filled

=20
!y

A

42A2
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Tapestry: Routing Example :
G

" Route message from 5230 to 42AD
* Always route to node closer to target

" At n™ hop, look at n+1-t level in neighbor map --> “always” one digit
more

= Not all nodes and links are shown
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Tapestry: Properties
L

" Node responsible for objects which have same ID
" Unlikely to find such node for every object

" Node responsible also for “nearby” objects (surrogate routing, see
below)

" Object publishing:
" Responsible nodes store only pointers
" Multiple copies of object possible (replica!)
" Each copy must publish itself
" Pointers cached along the publish path
" Queries routed towards responsible node
" Queries “often” hit cached pointers
" Queries for same object go (soon) to same nodes

" Note: Tapestry focuses on storing objects

" Chord and CAN focus on values, but in practice no difference
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