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Peer-to-Peer Networks

Chapter 3: Networks, Searching 
and Distributed Hash Tables

(Part 2)
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Chord: Performance

 Search performance of “pure” Chord O(n)
 Number of nodes is n

 With finger tables, need O(log n) hops to find the 
correct node

 Fingers separated by at least 2i-1

 With high probability, distance to target halves at each 
step

 In beginning, distance is at most 2m

 Hence, we need at most m hops

 For state information, “pure” Chord has only 
successor and predecessor, O(1) state

 For finger tables, need m entries
 Actually, only O(log n) are distinct
 Proof is in the paper
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To Hash or not to hash?

Addressing possible but no searching, because 
Hashes H(foo) are used…

Why not store the names un-hashed („foo“)?

Addressing possible but no searching, because 
Hashes H(foo) are used…

Why not store the names un-hashed („foo“)?



42TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Node-ID allocation

Node-ID is allocated by hashing the IP-
Address...

 - Does this have dis-advantages?

 - Advantages, too, may be?

Node-ID is allocated by hashing the IP-
Address...

 - Does this have dis-advantages?

 - Advantages, too, may be?
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CAN: Content Addressable 
Network

 CAN developed at UC Berkeley
 (Ratnasamy, Francis, Handley, Karp, Shenker)
 Originally published in 2001 at Sigcomm 

conference(!)

 CANs overlay routing easy to understand
 Paper concentrates more on performance evaluation
 Also discussion on how to improve performance by 

tweaking

 CAN project did not have much of a follow-up
 Only overlay was developed, no bigger extensions
 Interestingly enough, the idea is coming back with a twist…
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CAN: Basics

 CAN based on N-dimensional Cartesian coordinate space
 Our examples: N = 2

 One hash function for each dimension

 Entire space is partitioned amongst all the nodes
 Each node owns a zone in the overall space

 Abstractions provided by CAN:
 store data at points in the space

 route from one point to another

 Point = Node that owns the zone in which the point 
(coordinates) is located

 Order in which nodes join is important
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CAN: Partitioning

1
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CAN: Partitioning

1 2
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CAN: Partitioning
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CAN: Partitioning
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CAN: Partitioning

 CAN forms a 
d-
dimensional 
torus
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CAN: Examples

 Below examples for:
 How to join the network
 How routing tables are managed
 How to store and retrieve values
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CAN: Node Insertion

I

New node

Discover some 
node “I” 
already in CAN
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CAN: Node Insertion

pick random 
point in space

I

(p,q)

New node

New node picks
its coordinates
in space
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CAN: Node Insertion

(p,q)

I routes to 
(p,q), and 
discovers that 
node J owns 
(p,q)

I

J

New node
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CAN: Node Insertion

NewJ

Split J’s zone 
in half. New 
owns one 
half
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CAN: Routing Table

That‘s it. 
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CAN: Routing

(a,b)

(x,y)

Greedy Routing: minimize distance to target
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      a = hx(K)

CAN: Storing Values

x = a

node I::insert(K,V)

 I

y = b

      b = hy(K)
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(1)  a = h1(K)

      b = hd(K)

CAN: Storing Values

  (2)  route(K,V) ->  (a,b)

node I::insert(K,V)

 I
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CAN: Storing Values

  (2)  route(K,V) ->  (a,b)

  (3)  (a,b) stores (K,V) 

(K,V)

node I::insert(K,V)

 I(1)  a = h1(K)

      b = hd(K)
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CAN: Retrieving Values

 (2)  route “retrieve(K)” to 
(a,b) 

(K,V)

(1)  a = h1(K)

      b = hd(K)

node J::retrieve(K)

 J
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CAN: Improvements

 Possible to increase number of dimensions d
 Small increase in routing table size
- Shorter routing path, more neighbors for fault tolerance

 Multiple realities (= coordinate spaces)
 Use more hash functions
 Similar properties as increased dimensions (yet, not the 

same!)

 Routing weighted by round-trip times
 Take into account network topology
 Forward to the “best” neighbor
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CAN: More Improvements

 Use well-known landmark servers (e.g., DNS roots)
 Nodes join CAN in different areas, depending on distance to 

landmarks
 Pick points “near” landmark

 Idea: Geographically close nodes see same landmarks

 Uniform partitioning
 New node splits the largest zone in the neighborhood 

instead of the zone of the responsible node
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CAN: Performance

 State information at node O(d)
 Number of dimensions is d
 Need two neighbors in all coordinate axis
 Independent of the number of nodes!

 Routing takes O(dn1/d) hops
 Network has n nodes
 Multiple dimensions (and realities) improve this
 Routing improved by multiple dimensions

 Multiple realities mainly improve availability and 
fault tolerance
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Tapestry

 Tapestry developed at UC Berkeley(!)
 Different group from CAN developers

 Tapestry developed in 2000, but published in 2004
 Originally only as technical report, 2004 as journal article

 Many follow-up projects on Tapestry
 Example: OceanStore

 Tapestry based on work by Plaxton et al.

 Plaxton network has also been used by Pastry 

 Pastry was developed at Microsoft Research and Rice 
University

 Difference between Pastry and Tapestry minimal

 Tapestry and Pastry add dynamics and fault tolerance to Plaxton 
network
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Tapestry: Plaxton Network

 Plaxton network (or Plaxton mesh) based on prefix routing (similar to 
IP address allocation)

 Prefix and postfix are functionally identical

 Tapestry originally postfix, now prefix…

 Node ID and object ID hashed with SHA-1
 Expressed as hexadecimal (base 16) numbers (40 digits)

 Base is very important, here we use base 16

 Each node has a neighbor map with multiple levels
 Each level represents a matching prefix up to digit position in ID

 A given level has number of entries equal to the base of ID

 ith entry in jth level is closest node which starts prefix(N,j-1)+”i”

 Example: 9th entry of 4th level for node 325AE is the closest node with ID 
beginning with 3259
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Tapestry: Routing Mesh

 (Partial) routing mesh for a single node 4227
 Neighbors on higher levels match more digits

4228 27AB

6F43

43C9
51E5 4242

1D76

44AF

4227

L1

L1L1

L1
L4

L2

L2
L3
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Tapestry: Neighbor Map for 4227

Level 1 2 3 4 5 6 8 A

1 1D76 27AB 51E5 6F43

2 43C9 44AF

3 42A2

4 4228

•   There are actually 16 columns in the map (base 16)   
•   Normally more (most?) entries would be filled
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Tapestry: Routing Example

42AD

 Route message from 5230 to 42AD

 Always route to node closer to target

 At nth hop, look at n+1st level in neighbor map --> “always” one digit 
more

 Not all nodes and links are shown

5230
400F

4227 4629

42A2

AC78

42A7

4112

4211

42E0

42A9
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Tapestry: Properties

 Node responsible for objects  which have same ID
 Unlikely to find such node for every object

 Node responsible also for “nearby” objects (surrogate routing, see 
below)

 Object publishing:
 Responsible nodes store only pointers

 Multiple copies of object possible (replica!)

 Each copy must publish itself

 Pointers cached along the publish path

 Queries routed towards responsible node

 Queries “often” hit cached pointers

 Queries for same object go (soon) to same nodes

 Note: Tapestry focuses on storing objects
 Chord and CAN focus on values, but in practice no difference
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