Peer-to-Peer Networks

Chapter 3: Networks, Searching
and Distributed Hash Tables

(Part 2)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT

39



Chord: Performance
G

" Search performance of “pure” Chord O(n)
" Number of nodes is n

" With finger tables, need O(log n) hops to find the
correct node
" Fingers separated by at least 21

" With high probability, distance to target halves at each
step

" In beginning, distance is at most 2™
" Hence, we need at most m hops

" For state information, “pure” Chord has only
successor and predecessor, O(1) state

" For finger tables, need m entries
" Actually, only O(log n) are distinct
" Proof is in the paper

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT

40



To Hash or not to hash?
L

Addressing possible but no searching, because
Hashes H(foo) are used...

Why not store the names un-hashed (,,foo*)?

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT

41



Node-ID allocation
G

Node-ID is allocated by hashing the IP-
Address...

- Does this have dis-advantages?

- Advantages, too, may be?

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT

42



CAN: Content Addressable ,4

Network
G

" CAN developed at UC Berkeley
" (Ratnasamy, Francis, Handley, Karp, Shenker)

" Originally published in 2001 at Sigcomm
conference(!)

" CANs overlay routing easy to understand
" Paper concentrates more on performance evaluation

" Also discussion on how to improve performance by
tweaking

" CAN project did not have much of a follow-up
" Only overlay was developed, no bigger extensions
" Interestingly enough, the idea is coming back with a twist...

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 43



CAN: Basics

" CAN based on N-dimensional Cartesian coordinate space
" Qur examples: N = 2
* One hash function for each dimension

" Entire space is partitioned amongst all the nodes
" Each node owns a zone in the overall space

" Abstractions provided by CAN:
" store data at points in the space
" route from one point to another

" Point = Node that owns the zone in which the point
(coordinates) is located

" Order in which nodes join is important

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 44



CAN: Partitioning

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks - Chapter 3: DHT

45



CAN: Partitioning

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks - Chapter 3: DHT

46



CAN: Partitioning

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks - Chapter 3: DHT

47



CAN: Partitioning

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks - Chapter 3: DHT

48



CAN: Partitioning

= CAN forms a
d-
dimensional
torus

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks - Chapter 3: DHT

49



CAN: Examples

" Below examples for:
" How to join the network
" How routing tables are managed
" How to store and retrieve values

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT

50



CAN: Node Insertion

Discover some
node “|”

already in CAN

—~O
o

New node

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks - Chapter 3: DHT

51



CAN: Node Insertion

New node picks

its coordinates

In space

(P,Q) —

—~O
o

New node

pick random
point in space

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks -

Chapter 3: DHT

52



CAN: Node Insertion

| routes to
(p.q), and
discovers that
node | owns

(p.q)

‘/

(P,q)

/V/

A\ 4

\ 4
A\ 4
\ 4

New node

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks - Chapter 3: DHT

53



CAN: Node Insertion

Split |'s zone
in half. New

owns one
half

New

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks - Chapter 3: DHT

54



CAN: Routing Table

That's it. ©

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks - Chapter 3: DHT

55



CAN: Routing &

Greedy Routing: minimize distance to target

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 56




CAN: Storing Values @

node I::insert(K,V) .
a = h(K) d
b = h,(K)

y=b "~ "T"""""~"~"~~-r d)-————-

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 57



CAN: Storing Values @

node I::insert(K,V)

(1) a = h,(K)
b = h (K)

(2) route(K,V) -> (a,b)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 58



CAN: Storing Values @

node I::insert(K,V)

(1) a = h,(K) d
b = h,(K)

(2) route(K,V) -> (a,b) O (KV)

(3) (a,b) stores (K,V)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT



CAN: Retrieving Values @

node J::retrieve(K)
(1) a = h,(K)
b = h_(K)

(2) route “retrieve(K)” to (K,V)

(a,b)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT



CAN: Improvements
G

" Possible to increase number of dimensions d
" Small increase in routing table size
- Shorter routing path, more neighbors for fault tolerance

" Multiple realities (= coordinate spaces)
" Use more hash functions
" Similar properties as increased dimensions (yet, not the
same!)
" Routing weighted by round-trip times
" Take into account network topology
" Forward to the “best” neighbor

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 61



CAN: More Improvements
L

" Use well-known landmark servers (e.qg., DNS roots)

" Nodes join CAN in different areas, depending on distance to
landmarks

" Pick points “near” landmark
" |Idea: Geographically close nodes see same landmarks
" Uniform partitioning

" New node splits the largest zone in the neighborhood
instead of the zone of the responsible node

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 62



CAN: Performance
L

= State information at node O(d)
" Number of dimensions is d
" Need two neighbors in all coordinate axis
" Independent of the number of nodes!

" Routing takes O(dn*) hops
" Network has n nodes
" Multiple dimensions (and realities) improve this
" Routing improved by multiple dimensions

" Multiple realities mainly improve availability and
fault tolerance

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 63



Tapestry

GEE——
" Tapestry developed at UC Berkeley(!)

" Different group from CAN developers
" Tapestry developed in 2000, but published in 2004

" Originally only as technical report, 2004 as journal article
= Many follow-up projects on Tapestry

" Example: OceanStore

" Tapestry based on work by Plaxton et al.
" Plaxton network has also been used by Pastry
" Pastry was developed at Microsoft Research and Rice
University
* Difference between Pastry and Tapestry minimal

" Tapestry and Pastry add dynamics and fault tolerance to Plaxton

network
TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 64




Tapestry: Plaxton Network
G

" Plaxton network (or Plaxton mesh) based on prefix routing (similar to
IP address allocation)
" Prefix and postfix are functionally identical
" Tapestry originally postfix, now prefix...

" Node ID and object ID hashed with SHA-1
" Expressed as hexadecimal (base 16) numbers (40 digits)
" Base is very important, here we use base 16

" Each node has a neighbor map with multiple levels
" Each level represents a matching prefix up to digit position in ID
" A given level has number of entries equal to the base of ID

III'II

" jth entry in j* level is closest node which starts prefix(N,j-1)+

"= Example: 9th entry of 4th level for node 325AE is the closest node with ID
beginning with 3259

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 65



Tapestry: Routing Mesh
L .

" (Partial) routing mesh for a single node 4227
" Neighbors on higher levels match more digits

;

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT

66



Tapestry: Neighbor Map for 4227
L

Level 1 2 3 4 5 6 8
1 1D76 27AB 51E5 6F43
2 43C9 44AF
3
4 4228

* There are actually 16 columns in the map (base 16)
* Normally more (most?) entries would be filled

=20
!y

A

42A2

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT

67



Tapestry: Routing Example :
G

" Route message from 5230 to 42AD
* Always route to node closer to target

" At n™ hop, look at n+1-t level in neighbor map --> “always” one digit
more

= Not all nodes and links are shown

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT

68



Tapestry: Properties
L

" Node responsible for objects which have same ID
" Unlikely to find such node for every object

" Node responsible also for “nearby” objects (surrogate routing, see
below)

" Object publishing:
" Responsible nodes store only pointers
" Multiple copies of object possible (replica!)
" Each copy must publish itself
" Pointers cached along the publish path
" Queries routed towards responsible node
" Queries “often” hit cached pointers
" Queries for same object go (soon) to same nodes

" Note: Tapestry focuses on storing objects

" Chord and CAN focus on values, but in practice no difference
TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks - Chapter 3: DHT 69




	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

