
39TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Peer-to-Peer Networks

Chapter 3: Networks, Searching
and Distributed Hash Tables

(Part 2)

40TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Chord: Performance

 Search performance of “pure” Chord O(n)
 Number of nodes is n

 With finger tables, need O(log n) hops to find the
correct node

 Fingers separated by at least 2i-1

 With high probability, distance to target halves at each
step

 In beginning, distance is at most 2m

 Hence, we need at most m hops

 For state information, “pure” Chord has only
successor and predecessor, O(1) state

 For finger tables, need m entries
 Actually, only O(log n) are distinct
 Proof is in the paper

41TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

To Hash or not to hash?

Addressing possible but no searching, because
Hashes H(foo) are used…

Why not store the names un-hashed („foo“)?

Addressing possible but no searching, because
Hashes H(foo) are used…

Why not store the names un-hashed („foo“)?

42TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Node-ID allocation

Node-ID is allocated by hashing the IP-
Address...

 - Does this have dis-advantages?

 - Advantages, too, may be?

Node-ID is allocated by hashing the IP-
Address...

 - Does this have dis-advantages?

 - Advantages, too, may be?

43TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Content Addressable
Network

 CAN developed at UC Berkeley
 (Ratnasamy, Francis, Handley, Karp, Shenker)
 Originally published in 2001 at Sigcomm

conference(!)

 CANs overlay routing easy to understand
 Paper concentrates more on performance evaluation
 Also discussion on how to improve performance by

tweaking

 CAN project did not have much of a follow-up
 Only overlay was developed, no bigger extensions
 Interestingly enough, the idea is coming back with a twist…

44TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Basics

 CAN based on N-dimensional Cartesian coordinate space
 Our examples: N = 2

 One hash function for each dimension

 Entire space is partitioned amongst all the nodes
 Each node owns a zone in the overall space

 Abstractions provided by CAN:
 store data at points in the space

 route from one point to another

 Point = Node that owns the zone in which the point
(coordinates) is located

 Order in which nodes join is important

45TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Partitioning

1

46TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Partitioning

1 2

47TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Partitioning

1

2

3

48TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Partitioning

1

2

3

4

49TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Partitioning

 CAN forms a
d-
dimensional
torus

50TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Examples

 Below examples for:
 How to join the network
 How routing tables are managed
 How to store and retrieve values

51TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Node Insertion

I

New node

Discover some
node “I”
already in CAN

52TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Node Insertion

pick random
point in space

I

(p,q)

New node

New node picks
its coordinates
in space

53TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Node Insertion

(p,q)

I routes to
(p,q), and
discovers that
node J owns
(p,q)

I

J

New node

54TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Node Insertion

NewJ

Split J’s zone
in half. New
owns one
half

55TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Routing Table

That‘s it. 

56TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Routing

(a,b)

(x,y)

Greedy Routing: minimize distance to target

57TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

 a = hx(K)

CAN: Storing Values

x = a

node I::insert(K,V)

 I

y = b

 b = hy(K)

58TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

(1) a = h1(K)

 b = hd(K)

CAN: Storing Values

 (2) route(K,V) -> (a,b)

node I::insert(K,V)

 I

59TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Storing Values

 (2) route(K,V) -> (a,b)

 (3) (a,b) stores (K,V)

(K,V)

node I::insert(K,V)

 I(1) a = h1(K)

 b = hd(K)

60TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Retrieving Values

 (2) route “retrieve(K)” to
(a,b)

(K,V)

(1) a = h1(K)

 b = hd(K)

node J::retrieve(K)

 J

61TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Improvements

 Possible to increase number of dimensions d
 Small increase in routing table size
- Shorter routing path, more neighbors for fault tolerance

 Multiple realities (= coordinate spaces)
 Use more hash functions
 Similar properties as increased dimensions (yet, not the

same!)

 Routing weighted by round-trip times
 Take into account network topology
 Forward to the “best” neighbor

62TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: More Improvements

 Use well-known landmark servers (e.g., DNS roots)
 Nodes join CAN in different areas, depending on distance to

landmarks
 Pick points “near” landmark

 Idea: Geographically close nodes see same landmarks

 Uniform partitioning
 New node splits the largest zone in the neighborhood

instead of the zone of the responsible node

63TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Performance

 State information at node O(d)
 Number of dimensions is d
 Need two neighbors in all coordinate axis
 Independent of the number of nodes!

 Routing takes O(dn1/d) hops
 Network has n nodes
 Multiple dimensions (and realities) improve this
 Routing improved by multiple dimensions

 Multiple realities mainly improve availability and
fault tolerance

64TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry

 Tapestry developed at UC Berkeley(!)
 Different group from CAN developers

 Tapestry developed in 2000, but published in 2004
 Originally only as technical report, 2004 as journal article

 Many follow-up projects on Tapestry
 Example: OceanStore

 Tapestry based on work by Plaxton et al.

 Plaxton network has also been used by Pastry

 Pastry was developed at Microsoft Research and Rice
University

 Difference between Pastry and Tapestry minimal

 Tapestry and Pastry add dynamics and fault tolerance to Plaxton
network

65TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Plaxton Network

 Plaxton network (or Plaxton mesh) based on prefix routing (similar to
IP address allocation)

 Prefix and postfix are functionally identical

 Tapestry originally postfix, now prefix…

 Node ID and object ID hashed with SHA-1
 Expressed as hexadecimal (base 16) numbers (40 digits)

 Base is very important, here we use base 16

 Each node has a neighbor map with multiple levels
 Each level represents a matching prefix up to digit position in ID

 A given level has number of entries equal to the base of ID

 ith entry in jth level is closest node which starts prefix(N,j-1)+”i”

 Example: 9th entry of 4th level for node 325AE is the closest node with ID
beginning with 3259

66TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Routing Mesh

 (Partial) routing mesh for a single node 4227
 Neighbors on higher levels match more digits

4228 27AB

6F43

43C9
51E5 4242

1D76

44AF

4227

L1

L1L1

L1
L4

L2

L2
L3

67TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Neighbor Map for 4227

Level 1 2 3 4 5 6 8 A

1 1D76 27AB 51E5 6F43

2 43C9 44AF

3 42A2

4 4228

• There are actually 16 columns in the map (base 16)
• Normally more (most?) entries would be filled

68TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Routing Example

42AD

 Route message from 5230 to 42AD

 Always route to node closer to target

 At nth hop, look at n+1st level in neighbor map --> “always” one digit
more

 Not all nodes and links are shown

5230
400F

4227 4629

42A2

AC78

42A7

4112

4211

42E0

42A9

69TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Properties

 Node responsible for objects which have same ID
 Unlikely to find such node for every object

 Node responsible also for “nearby” objects (surrogate routing, see
below)

 Object publishing:
 Responsible nodes store only pointers

 Multiple copies of object possible (replica!)

 Each copy must publish itself

 Pointers cached along the publish path

 Queries routed towards responsible node

 Queries “often” hit cached pointers

 Queries for same object go (soon) to same nodes

 Note: Tapestry focuses on storing objects
 Chord and CAN focus on values, but in practice no difference

	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

