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Classes	
  of	
  Graphs

• Regular	
  graphs

• Random	
  graphs

• Graphs	
  with	
  Small-­‐World	
  characteris9c

• Scale-­‐free	
  graphs

• Graphs	
  with	
  plenty	
  more	
  characteris9cs
– (Dis-­‐)	
  Assorta9vity
– Rich-­‐club	
  connec9vity
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Regular	
  Graphs

• Regular	
  graphs	
  have	
  tradi9onally	
  been	
  used	
  to	
  model	
  networks

• Regular	
  graphs:
– Node	
  degree	
  is	
  constant
– Different	
  topologies	
  possible

• But	
  the	
  model	
  does	
  not	
  reflect	
  reality	
  of	
  nature	
  very	
  well…
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Random	
  Graphs

• Random	
  graphs	
  are	
  first	
  widely	
  studied	
  graph	
  family
– Many	
  P2P	
  networks	
  choose	
  neighbors	
  more	
  or	
  less	
  randomly

• Two	
  different	
  nota9ons	
  generally	
  used:
– Erdös	
  and	
  Renyi	
  -­‐	
  ER(n,|E|)
– Gilbert	
  -­‐	
  G(n,p)

• G(n,p)	
  is	
  a	
  graph	
  where	
  the	
  probability	
  of	
  an	
  edge	
  e	
  =	
  {v,	
  w}	
  is	
  2p

• Construc9on	
  algorithm:
– For	
  each	
  possible	
  edge,	
  draw	
  a	
  random	
  number
– If	
  the	
  number	
  is	
  smaller	
  than	
  2p,	
  then	
  the	
  edge	
  exists
– p	
  can	
  be	
  func9on	
  of	
  n	
  or	
  a	
  constant
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Random	
  Graphs	
  -­‐	
  Basic	
  Proper8es

• Giant	
  Connected	
  Component
– Let	
  c	
  >	
  0	
  be	
  a	
  constant	
  and	
  p	
  =	
  c/n.
– If	
  c	
  <	
  1	
  every	
  component	
  of	
  G(n,p)	
  has	
  order	
  O(log	
  N)	
  with	
  high	
  probability.
– If	
  c	
  >	
  1	
  then	
  there	
  is	
  one	
  component	
  of	
  size	
  O(n),	
  with	
  high	
  probability.

• All	
  other	
  components	
  have	
  size	
  O(log	
  N)
– English:	
  Giant	
  connected	
  component	
  emerges	
  with	
  high	
  probability	
  when	
  

average	
  degree	
  is	
  about	
  1

• Node	
  degree	
  distribu9on
– If	
  we	
  take	
  a	
  random	
  node,	
  how	
  high	
  is	
  the	
  prob.	
  P(k)	
  that	
  it	
  has	
  degree	
  k?
– Node	
  degree	
  is	
  Poisson	
  distributed
– Parameter	
  c	
  =	
  expected	
  number	
  of	
  occurrences

• Clustering	
  coefficient
– Clustering	
  coefficient	
  of	
  a	
  random	
  graph	
  is	
  asympto9cally	
  equal	
  to	
  p	
  with	
  

high	
  probability
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Gilbert	
  -­‐	
  Degree	
  Distribu8on
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Gilbert	
  -­‐	
  Connec8vity
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Random	
  Graphs:	
  Summary

• Before	
  random	
  graphs,	
  regular	
  graphs	
  were	
  popular
– Regular:	
  Every	
  node	
  has	
  same	
  degree

• Random	
  graphs	
  have	
  two	
  advantages	
  over	
  regular	
  graphs
1. Many	
  interes9ng	
  proper9es	
  analy9cally	
  solvable
2. Much	
  befer	
  for	
  applica9ons,	
  e.g.,	
  social	
  networks

• Note:
– Does	
  not	
  mean	
  social/p2p	
  networks	
  are	
  random	
  graphs
– But	
  proper9es	
  of	
  social/p2p	
  networks	
  are	
  well-­‐described	
  by	
  random	
  graphs

• Ques9on:
– How	
  to	
  model	
  networks	
  with	
  local	
  clusters	
  and	
  small	
  diameter?

• Answer:
– Small-­‐world	
  networks
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Milgram's	
  Small	
  World	
  Experiment
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Six	
  Degrees	
  of	
  Separa8on

• Famous	
  experiment	
  from	
  1960’s	
  (S.	
  Milgram)
• Send	
  a	
  lefer	
  to	
  random	
  people	
  in	
  Kansas	
  and	
  Nebraska	
  and	
  ask	
  

people	
  to	
  forward	
  lefer	
  to	
  a	
  person	
  in	
  Boston	
  (~	
  3000	
  km)
– Person	
  iden9fied	
  by	
  name,	
  profession,	
  and	
  city

• Rule:	
  Give	
  lefer	
  only	
  to	
  people	
  you	
  know	
  by	
  first	
  name	
  and	
  ask	
  
them	
  to	
  pass	
  it	
  on	
  according	
  to	
  same	
  rule
– Some	
  lefers	
  reached	
  their	
  goal

• Lefer	
  needed	
  six	
  steps	
  on	
  average	
  to	
  reach	
  the	
  person
• Graph	
  theore9cally:	
  Social	
  networks	
  have	
  dense	
  local	
  structure,	
  

but	
  (apparently)	
  small	
  diameter
– Generally	
  referred	
  to	
  as	
  “small	
  world	
  effect”
– Usually,	
  small	
  number	
  of	
  persons	
  act	
  as	
  “hubs”
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Small-­‐World	
  Networks

• Discovered	
  by	
  Wafs	
  and	
  Strogatz	
  (1998)	
  (30	
  years	
  aser	
  Milgram)
• Wafs	
  and	
  Strogatz	
  looked	
  at	
  three	
  networks

– Film	
  collabora9on	
  between	
  actors,	
  US	
  power	
  grid,	
  Neural	
  network	
  of	
  worm	
  
Caenorhabdi9s	
  elegans	
  (“C.	
  elegans”)

• Measured	
  characteris9cs
– CC	
  as	
  a	
  measure	
  for	
  ‘regularity‘,	
  or	
  ‘locality‘	
  of	
  the	
  network	
  

• If	
  it	
  is	
  high,	
  edges	
  are	
  rather	
  build	
  between	
  close	
  nodes
– CPL	
  -­‐	
  characteris9c	
  path	
  length

• Results
– Grid-­‐like	
  networks

• High	
  CC	
  &	
  high	
  CPL	
  (edges	
  are	
  not	
  ‘random‘,	
  but	
  rather	
  ‘local‘)
– Most	
  real-­‐world	
  (natural)	
  networks

• High	
  CC	
  (0.3-­‐0.4)	
  &	
  low	
  CPL
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Small-­‐World	
  Networks	
  and	
  Random	
  Graphs

• Results
– Compared	
  to	
  a	
  random	
  graph	
  with	
  same	
  number	
  of	
  nodes
– Diameters	
  similar,	
  slightly	
  higher	
  for	
  real	
  graph
– Clustering	
  coefficient	
  orders	
  of	
  magnitude	
  higher

• Defini9on	
  of	
  small-­‐worlds	
  network
1. Dense	
  local	
  clustering	
  structure
2. Small	
  diameter	
  comparable	
  to	
  that	
  of	
  a	
  same-­‐sized	
  random	
  graph
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The	
  WS	
  Model	
  -­‐	
  Construc8ng	
  Small-­‐World	
  Graphs

• Put	
  all	
  n	
  nodes	
  on	
  a	
  ring,	
  number	
  them	
  consecu9vely	
  from	
  1	
  to	
  n
– Connect	
  each	
  node	
  with	
  its	
  k	
  clockwise	
  neighbors
– Traverse	
  ring	
  in	
  clockwise	
  order

• For	
  every	
  edge
– Draw	
  random	
  number	
  r
– If	
  r	
  <	
  p

• Re-­‐wire	
  edge	
  to	
  random	
  target	
  node	
  (no	
  duplicates)
– Else

• Keep	
  “old”	
  edge

• Different	
  values	
  of	
  p	
  give	
  different	
  graphs
– If	
  p	
  is	
  close	
  to	
  0,	
  then	
  original	
  structure	
  mostly	
  preserved
– If	
  p	
  is	
  close	
  to	
  1,	
  then	
  new	
  graph	
  is	
  random
– Interes9ng	
  things	
  happen	
  when	
  p	
  is	
  somewhere	
  in-­‐between
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Regular,	
  Small-­‐World,	
  Random
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Kleinberg’s	
  Small-­‐World	
  Navigability	
  Model

• Small-­‐world	
  model	
  and	
  power	
  law	
  explain	
  why	
  short	
  paths	
  exist
• Missing	
  piece	
  in	
  the	
  puzzle:	
  why	
  can	
  we	
  find	
  these	
  paths?
• Sewng

– Each	
  node	
  has	
  only	
  local	
  informa9on
– Even	
  if	
  a	
  short	
  cut	
  exists,	
  how	
  do	
  people	
  know	
  about	
  it?
– Milgram’s	
  experiment:

• Some	
  addi9onal	
  informa9on	
  (profession,	
  address,	
  hobbies	
  etc.)	
  is	
  used	
  
to	
  decide	
  which	
  neighbor	
  is	
  “closest”	
  to	
  recipient

• Results	
  showed	
  that	
  first	
  steps	
  were	
  the	
  largest

• Kleinberg’s	
  Small-­‐World	
  Model	
  (2d)
– Set	
  of	
  points	
  in	
  an	
  n	
  x	
  n	
  grid
– Distance	
  is	
  the	
  number	
  of	
  “steps”	
  separa9ng	
  points
– d(i,	
  j)	
  =	
  |xi	
  -­‐	
  xj|	
  +	
  |yi	
  -­‐	
  yj|	
  (Manhafan	
  distance)
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Kleinberg’s	
  Small-­‐World	
  Navigability	
  Model	
  (2d)

• Connec9ons	
  on	
  the	
  grid
– All	
  nodes	
  are	
  connected	
  to	
  all	
  nodes	
  at	
  distance	
  p

• Long-­‐range	
  contacts	
  to	
  nodes	
  at	
  larger	
  distances	
  (q)
– With	
  probability	
  decreasing	
  with	
  growing	
  distance
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Kleinberg’s	
  Small-­‐World	
  Navigability	
  Model

• d-­‐dimensional	
  iden9fier	
  space
– Every	
  node	
  vi	
  is	
  connected	
  to	
  node	
  vj	
  within	
  distance	
  p
– For	
  every	
  node	
  vi,	
  addi9onal	
  q	
  long-­‐range	
  edges	
  are	
  added
– Probability	
  that	
  node	
  vj	
  is	
  selected	
  is	
  propor9onal	
  to	
  d(vi,	
  vj)-­‐r

• For	
  constant	
  r	
  (harmonic	
  distribu9on	
  p)
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Naviga8on	
  in	
  Kleinberg’s	
  Model

• Simple	
  greedy	
  rou9ng	
  (2d)
– Nodes	
  only	
  know	
  local	
  links	
  and	
  target	
  posi9on
– Always	
  use	
  the	
  link	
  that	
  brings	
  message	
  closest	
  to	
  target

• If	
  r=2	
  (p=q=1),	
  expected	
  lookup	
  9me	
  is	
  	
  O(log2n)
• If	
  r≠2,	
  expected	
  lookup	
  9me	
  is	
  O(nε),	
  where	
  ε	
  depends	
  on	
  r

• Kleinberg	
  has	
  shown
– Rou9ng	
  takes	
  O(log²	
  n)	
  hops	
  iff	
  r=d	
  (d	
  =	
  number	
  of	
  dimensions)

• Idea	
  behind	
  proof
– For	
  any	
  r	
  <	
  s	
  there	
  are	
  too	
  few	
  random	
  edges	
  to	
  make	
  paths	
  short
– For	
  r	
  >	
  s	
  there	
  are	
  too	
  many	
  random	
  edges	
  /	
  too	
  many	
  choices
– The	
  message	
  will	
  make	
  a	
  (long)	
  random	
  walk	
  through	
  the	
  network
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Summary	
  of	
  Kleinberg’s	
  Model

• Kleinberg’s	
  small	
  world	
  model	
  thus	
  provides
– Way	
  of	
  building	
  a	
  peer-­‐to-­‐peer	
  overlay	
  network
– Very	
  simple,	
  greedy,	
  and	
  local	
  rou9ng	
  protocol	
  is	
  applicable

• Rou9ng:	
  forward	
  message	
  to	
  contact	
  who	
  is	
  closest	
  to	
  target
– Assumes	
  some	
  way	
  of	
  associa9ng	
  nodes	
  with	
  points	
  in	
  grid
– Assumes	
  some	
  way	
  to	
  know	
  about	
  “closest”	
  ones
– Compare	
  with	
  CAN
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Problems	
  with	
  Small-­‐World	
  Graphs

• Small-­‐world	
  graphs	
  explain	
  why:
– Highly	
  clustered	
  graphs	
  can	
  have	
  short	
  average	
  path	
  lengths	
  (“short	
  cuts”)

• Small-­‐world	
  graphs	
  do	
  NOT	
  explain	
  why:
– This	
  property	
  emerges	
  in	
  real	
  networks
– Real	
  networks	
  are	
  prac9cally	
  never	
  ring-­‐	
  or	
  grid-­‐like

• Further	
  problem	
  with	
  small-­‐world	
  graphs:
– Nearly	
  all	
  nodes	
  have	
  same	
  degree
– Not	
  true	
  for	
  random	
  graphs
– What	
  about	
  real	
  networks?

20



TU	
  Darmstadt,	
  FG	
  P2P,	
  Th.	
  Strufe Peer-­‐to-­‐Peer	
  Networks	
  -­‐	
  Graph	
  Theory

Internet

• Faloutsos	
  et	
  al.	
  study	
  from	
  99:	
  Internet	
  topology	
  examined	
  in	
  1998
• AS-­‐level	
  topology,	
  during	
  1998	
  Internet	
  grew	
  45%
• Mo9va9on:

– What	
  does	
  the	
  Internet	
  look	
  like?
– Are	
  there	
  any	
  topological	
  proper9es	
  that	
  don’t	
  change	
  over	
  9me?
– How	
  to	
  generate	
  Internet-­‐like	
  graphs	
  for	
  simula9ons?

• 4	
  key	
  proper9es	
  found,	
  each	
  follows	
  a	
  power-­‐law;	
  Sort	
  nodes	
  
according	
  to	
  their	
  (out)degree
– Outdegree	
  of	
  a	
  node	
  is	
  propor9onal	
  to	
  its	
  rank	
  to	
  the	
  power	
  of	
  a	
  constant
– Number	
  of	
  nodes	
  with	
  same	
  out-­‐degree	
  is	
  propor9onal	
  to	
  the	
  out-­‐degree	
  to	
  

the	
  power	
  of	
  a	
  constant
– Eigenvalues	
  of	
  a	
  graph	
  are	
  propor9onal	
  to	
  the	
  order	
  to	
  the	
  power	
  of	
  a	
  

constant
– Total	
  number	
  of	
  pairs	
  of	
  nodes	
  within	
  a	
  distance	
  d	
  is	
  propor9onal	
  to	
  d	
  to	
  

the	
  power	
  of	
  a	
  constant
21
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World	
  Wide	
  Web

• Links	
  between	
  documents	
  in	
  the	
  World	
  Wide	
  Web
– 800	
  Mio.	
  documents	
  inves9gated	
  (S.	
  Lawrence,	
  1999)

• What	
  was	
  expected	
  so	
  far?
– Number	
  of	
  links	
  per	
  web	
  page:	
  k	
  ~	
  6
– Number	
  of	
  pages	
  in	
  the	
  WWW:	
  NWWW	
  ~	
  109

22

Probability “page has 500 links”.
P(k=500) ~ 10-99

Number of pages with 500 links:
N(k=500) ~ 10-90
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World	
  Wide	
  Web:	
  Result	
  of	
  Inves8ga8on	
  

23

Probability “page has 500 links”.
P(k=500) ~ 10-99

P(k=500) ~ 10-6

Number of pages with 500 links:
N(k=500) ~ 10-90

N(k=500) ~ 103
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Power	
  Law	
  Networks

• Also	
  known	
  as	
  scale-­‐free	
  networks
• “Power	
  Law”	
  rela9onship	
  for	
  Web	
  pages

– The	
  probability	
  P(k)	
  that	
  a	
  page	
  has	
  k	
  links	
  (or	
  k	
  other	
  pages	
  link	
  to	
  this	
  
page)	
  is	
  propor9onal	
  to	
  the	
  number	
  of	
  links	
  k	
  to	
  the	
  power	
  of	
  y

– P(k)	
  ~	
  ck-­‐y

• General	
  ”Power	
  Law”	
  Rela9onships
– A	
  certain	
  characteris9c	
  k	
  is	
  –	
  independent	
  of	
  the	
  growth	
  of	
  the	
  system	
  –	
  

always	
  propor9onal	
  to	
  ka,	
  whereby	
  a	
  is	
  a	
  constant	
  (osen	
  -­‐2	
  <	
  a	
  <	
  -­‐4)

• Power	
  laws	
  very	
  common	
  (“natural”)
– And	
  power	
  law	
  networks	
  exhibit	
  small-­‐world-­‐effect
– E.g.	
  WWW:	
  19	
  degrees	
  of	
  separa9on
– (R.	
  Albert	
  et	
  al,	
  Nature	
  (99);	
  S.	
  Lawrence	
  et	
  al,	
  Nature	
  (99))
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Examples	
  for	
  Power	
  Law	
  Networks

• Economics
– Pareto:	
  income	
  distribu9on

(common	
  simplifica9on:	
  20%	
  of	
  popula9on	
  own	
  80%	
  of	
  the	
  wealth)
– Sizes	
  of	
  companies	
  and	
  ci9es	
  (Zipf’s	
  law)

• Human	
  networks
– Professional	
  (e.g.	
  collabora9ons	
  between	
  actors,	
  scien9sts)
– Social	
  (friendship,	
  acquaintances)
– Sexual-­‐contact	
  networks

• Many	
  other	
  natural	
  occurrences
– Distribu9on	
  of	
  English	
  words	
  (Zipf’s	
  law	
  again)
– Areas	
  burnt	
  in	
  forest	
  fires,	
  meteor	
  impacts	
  on	
  the	
  moon

• Internet	
  also	
  follows	
  some	
  power	
  laws
– Popularity	
  of	
  Web	
  pages	
  (possibly	
  related	
  to	
  Zipf’s	
  law	
  for	
  English	
  words?)
– Connec9vity	
  of	
  routers	
  and	
  Autonomous	
  Systems,	
  Gnutella’s	
  topology!
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Graph	
  Genera8on	
  /	
  Analysis:	
  So	
  What!?

• Science	
  is	
  the	
  art	
  of	
  systema9cally	
  trying	
  to	
  understand	
  nature
• Today	
  more	
  than	
  ever:	
  yes,	
  we	
  can!
• In	
  our	
  case:

– Understand	
  the	
  proper9es	
  of	
  different	
  networks	
  /	
  topologies	
  /	
  models
– Define	
  which	
  of	
  them	
  are	
  „good“	
  and	
  „bad“	
  (wrt.	
  certain	
  requirements)
– Understand	
  topology	
  classes	
  (are	
  there	
  short-­‐cuts	
  we	
  haven‘t	
  even	
  seen?)
– Looking	
  for	
  ways	
  to	
  op9mize	
  topologies
– Re-­‐thinking	
  previous	
  designs

• IP	
  and	
  rou9ng	
  are	
  op9mized	
  for	
  random	
  graphs
– Require	
  topology	
  generators

• Allows	
  us	
  to	
  test	
  our	
  algorithms	
  in	
  them	
  (the	
  freenet	
  case)
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Barabasi-­‐Albert	
  Model

• How	
  do	
  power	
  law	
  networks	
  emerge?
– In	
  a	
  network	
  where	
  new	
  nodes	
  are	
  added	
  and	
  new	
  nodes	
  tend	
  to	
  connect	
  

to	
  well-­‐connected	
  nodes,	
  the	
  vertex	
  connec9vi9es	
  follow	
  a	
  power-­‐law

• Barabasi-­‐Albert	
  Model
– Power-­‐law	
  network	
  is	
  constructed	
  with	
  two	
  rules:
1. Network	
  grows	
  in	
  9me
2. New	
  node	
  has	
  preferences	
  to	
  whom	
  it	
  wants	
  to	
  connect

• Preferen9al	
  connec9vity	
  modeled	
  as
– Each	
  new	
  node	
  connects	
  to	
  m	
  other	
  nodes
– Probability	
  of	
  connec9ng	
  to	
  vj	
  is	
  propor9onal	
  to	
  its	
  degree	
  d(vj)

• New	
  nodes	
  tend	
  to	
  connect	
  to	
  well-­‐connected	
  nodes
– Another	
  way	
  of	
  saying	
  this:	
  “The	
  rich	
  get	
  richer”
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Barabasi-­‐Albert	
  Model

28

Can you see it, too? ;-)
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Copying	
  model

• Alterna9ve	
  genera9ve	
  model	
  (R.	
  Kumar,	
  P.	
  Raghavan,	
  et	
  al.	
  2000)
– In	
  each	
  step:	
  randomly	
  copy	
  one	
  of	
  the	
  exis9ng	
  nodes	
  keeping	
  all	
  its	
  links

• Connect	
  original	
  node	
  and	
  copy
– Randomly	
  remove	
  edges	
  from	
  both	
  nodes	
  with	
  a	
  very	
  small	
  probability

• For	
  each	
  removed	
  edge	
  randomly	
  draw	
  new	
  target	
  nodes

• Probability	
  of	
  node	
  v	
  gewng	
  a	
  new	
  edge	
  in	
  some	
  9me	
  step	
  is	
  
propor9onal	
  to	
  its	
  degree	
  at	
  that	
  9me
– More	
  edges	
  →	
  higher	
  probability	
  of	
  a	
  neighbor	
  being	
  chosen	
  during	
  a	
  step
– Clear	
  contrast	
  to	
  random	
  networks

• Small	
  number	
  of	
  well-­‐connected	
  hubs
• Many	
  nodes	
  with	
  few	
  connec9ons
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Further	
  Need	
  for	
  Improvement	
  of	
  Generators

• Social	
  Graphs,	
  P2P	
  topologies,	
  or	
  generated	
  AS-­‐level	
  (and	
  general)	
  
Internet	
  topologies	
  in	
  many	
  cases	
  s9ll	
  not	
  very	
  realis9c

• All	
  follow	
  power-­‐law,	
  but	
  which	
  could	
  be	
  modeling	
  the	
  Internet?
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Further	
  Metrics:	
  Dis-­‐/Assorta8vity

• Who	
  is	
  interconnected?
• How	
  „similar“	
  are	
  the	
  connected	
  nodes?
• Assorta9vity	
  refers	
  to	
  the	
  preference	
  of	
  nodes	
  to	
  connect	
  to	
  other	
  

nodes	
  that	
  in	
  some	
  way	
  are	
  similar.
• In	
  Internet/Overlay/Social	
  Network	
  analysis	
  the	
  „way“	
  usually	
  

refers	
  to	
  the	
  node	
  degrees:

• 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   the	
  Internet?
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Assorta8vity	
  in	
  Real	
  Networks

• Social	
  Networks	
  exhibit	
  clear	
  
assorta9vity

• Technological/biological	
  
networks	
  exhibit	
  clear	
  
disassorta9vity

• Again:	
  which	
  one	
  could	
  be	
  
the	
  Internet?	
  ;-­‐)
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Is	
  it	
  really?	
  Power-­‐Law	
  and	
  Disassorta8ve?

• What	
  about	
  peering	
  points?
• Peering	
  points	
  generally	
  have	
  a	
  very	
  high	
  node	
  degree	
  and	
  are	
  

connected	
  to	
  each	
  other
• Introducing:	
  The	
  Rich-­‐Club	
  Connec9vity

– Measures,	
  which	
  frac9on	
  of	
  nodes	
  with	
  the	
  highest	
  node	
  degree	
  are	
  
actually	
  interconnected
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The	
  Internet	
  and	
  the	
  Rich	
  Club	
  Connec8vity

• Contradic9on?!?
– The	
  Internet	
  is	
  disassorta9ve	
  and	
  Rich-­‐Club	
  Connected?

• Only	
  partly
– The	
  low-­‐	
  and	
  mid-­‐degree	
  nodes	
  are	
  disassorta9ve,	
  the	
  rest	
  is	
  the	
  „rich	
  club“
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Great!	
  We	
  Can	
  Generate	
  Internet-­‐like	
  Topologies!

• Useful	
  if	
  we	
  want	
  to	
  evaluate	
  a	
  distributed	
  system
• Make	
  sure	
  the	
  proper9es	
  of	
  the	
  underlay	
  are	
  correctly	
  assumed
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Proper8es	
  of	
  Scale-­‐Free	
  Networks

• Recall:	
  „Easy“	
  to	
  find	
  paths	
  in	
  small	
  world	
  networks
• How	
  about	
  robustness?

– Further	
  robustness/resistance	
  metrics:
– Balanced	
  (vertex)	
  cut

• Minimum	
  number	
  of	
  edges	
  (ver9ces)	
  removed	
  to	
  achieve	
  a	
  network	
  
fragmenta9on	
  into	
  two	
  equal	
  components

– Average	
  Connected	
  Distance
• CPL	
  under	
  failure	
  of	
  or	
  afack	
  on	
  nodes

– Maximum	
  Isolated	
  Component	
  Size	
  (giant	
  connected	
  component)
– Average	
  Isolated	
  Component	
  Size
– „Point	
  of	
  Rupture“

• Minimum	
  number	
  of	
  nodes	
  the	
  removal	
  of	
  which	
  causes	
  the	
  network	
  to	
  
fragment	
  into	
  components,	
  with	
  |GCC|	
  <	
  0.5*|V|
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Robustness:	
  Example
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Proper8es	
  of	
  Scale-­‐Free	
  Networks

• Robustness	
  against	
  random	
  failures
– Important	
  property	
  of	
  networks	
  with	
  scale-­‐free	
  degree	
  distribu9on
– Remove	
  randomly	
  chosen	
  vertex	
  v

• With	
  high	
  probability	
  =>	
  damage	
  to	
  the	
  network	
  small

• But	
  very	
  sensi9ve	
  against	
  afacks
– Adversary	
  removes	
  highest	
  degree	
  ver9ces	
  first
– The	
  network	
  quickly	
  decomposes	
  into	
  very	
  small	
  components

• Note:	
  random	
  graphs	
  are	
  not	
  robust	
  against	
  random	
  failures
– But	
  not	
  sensi9ve	
  against	
  afacks	
  either
– Because	
  all	
  ver9ces	
  more	
  or	
  less	
  have	
  the	
  same	
  degree
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Robustness	
  of	
  Scale	
  Free	
  vs.	
  Random	
  Networks

• Experiment:	
  take	
  network	
  of	
  10k	
  nodes	
  (random	
  and	
  power-­‐law)	
  
• Remove	
  nodes	
  randomly

39

Random Graph „Power Law“ Graph 
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Robustness	
  of	
  Scale	
  Free	
  vs.	
  Random	
  Networks

• Random	
  graph:
– Take	
  out	
  5%	
  of	
  nodes:	
  Biggest	
  component	
  9000	
  nodes
– Take	
  out	
  18%	
  of	
  nodes:	
  No	
  biggest	
  component,	
  all	
  components	
  between	
  1	
  

and	
  100	
  nodes
– Take	
  out	
  45%	
  of	
  nodes:	
  Only	
  groups	
  of	
  1	
  or	
  2	
  survive

• Power-­‐law	
  graph:
– Take	
  out	
  5%	
  of	
  nodes:	
  Only	
  isolated	
  nodes	
  break	
  off
– Take	
  out	
  18%	
  of	
  nodes:	
  Biggest	
  component	
  8000	
  nodes
– Take	
  out	
  45%	
  of	
  nodes:	
  Large	
  cluster	
  persists,	
  fragments	
  small

• Networks	
  with	
  power	
  law	
  exponent	
  <	
  3	
  are	
  very	
  robust
against	
  random	
  node	
  failures

• ONLY	
  true	
  for	
  random	
  failures!
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The	
  consequence…
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Unstructured	
  P2P	
  Networks

• What	
  do	
  real	
  (unstructured)	
  Peer-­‐to-­‐Peer	
  Networks	
  look	
  like?

• Depends	
  on	
  the	
  protocols	
  used
– Some	
  P2P	
  networks,	
  e.g.,	
  Freenet,	
  evolve	
  voluntarily	
  in	
  a	
  small-­‐world

• High	
  clustering	
  coefficient,	
  small	
  diameter
– Some	
  protocols,	
  e.g.,	
  Gnutella,	
  implicitly	
  generate	
  a	
  scale-­‐free	
  degree	
  distr.

• Case	
  study:	
  Gnutella	
  network
• How	
  does	
  the	
  Gnutella	
  network	
  evolve?

– Nodes	
  with	
  high	
  degree	
  answer	
  more	
  likely	
  to	
  Ping	
  messages
– Thus,	
  they	
  are	
  more	
  likely	
  chosen	
  as	
  neighbor
– Host	
  caches	
  always/osen	
  provide	
  addresses	
  of	
  well	
  connected	
  nodes
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Gnutella

• Node	
  degrees	
  in	
  Gnutella	
  follow	
  power-­‐law	
  rule
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Gnutella	
  /2

• Network	
  diameter	
  stayed	
  nearly	
  constant,	
  though	
  the	
  network	
  
grew	
  by	
  one	
  order	
  of	
  magnitude

• Robustness
– Remember:	
  networks	
  with	
  power-­‐law	
  exponent	
  <	
  3	
  are	
  very	
  robust	
  against	
  

random	
  node	
  failures	
  (Gnutella’s	
  exponent	
  is	
  2.3)

• Theore9cal	
  experiment
– Subset	
  of	
  Gnutella	
  with	
  1771	
  nodes
– Take	
  out	
  random	
  30%	
  of	
  nodes,	
  network	
  s9ll	
  survives
– Take	
  out	
  4%	
  of	
  best	
  connected	
  nodes,	
  network	
  splinters

• For	
  more	
  informa9on	
  on	
  Gnutella,	
  see:
– Matei	
  Ripeanu,	
  Adriana	
  Iamnitchi,	
  Ian	
  Foster:	
  Mapping	
  the	
  Gnutella	
  

Network,	
  IEEE	
  Internet	
  Compu9ng,	
  Jan/Feb	
  2002
– Zeinalipour-­‐Yaz9,	
  Folias,	
  Faloutsos,	
  “A	
  Quan9ta9ve	
  Analysis	
  of	
  the	
  Gnutella	
  

Network	
  Traffic”,	
  Tech.	
  Rep.	
  May	
  2002
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Analyzing	
  Chord	
  -­‐	
  Characteris8c	
  Path	
  Length
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Analyzing	
  Chord	
  -­‐	
  Point	
  of	
  Rupture
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Analyzing	
  Chord:	
  So	
  what	
  can	
  we	
  do?

• Increase	
  connec9vity!
• Select	
  more	
  neighbors!	
  But	
  how?

– Addi9onal	
  fingers:	
  Finger[i]=n.id+(1+1/d)i

– Addi9onal	
  successors	
  (r)
– What	
  will	
  the	
  results	
  look	
  like?
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Analysing	
  CHORD	
  (3)
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Analysing	
  CHORD	
  (4,	
  A_ack)
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Analysing	
  CHORD	
  (5,	
  Failure)
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Analysing	
  CHORD	
  (6,	
  A_ack)
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