Taking Graph Metrics a Step Further: MOPS
e

= P2P Systems master primary problems (connectivity, location)
well

" But: raise a plethora of secondary problems (response times,
recall, precision, availability, load distribution,...)

" Traditional solutions:
1.Build a sophisticated monitoring
2.Exchange lots of information to establish idea of global state
3.Introduce protocol to optimize (mitigate...)

" How about:
- Analyze subgraph of neighbors and optimize locally?
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Motifs: Local Structures of Networks

L
= Global metrics for network analyzis are expensive (and tedious to calculate)

= | ocal structures are surprisingly characteristic for complex networks

= Analyze direct neighborhood:
= Permutation of all pairs (triads) / triples (tetrades) / ... of neighbors
= Check interconnectivity (Motif)
= Count occurrence of characteristic subgraphs

= Calculate statistical significance of occurences
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A Quick Example of Motifs >
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Network Characteristics and Significance Profiles A
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Motifs in Chord

" Ring structure, finger tables
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Quick Example DHT: Symphony

" Ring based, random long distance links (LD)

" (Watch out! It's frequency, not significance in these cases!)

90%

B0%

TR -

60% -

50%

Haufigkeit

4096

30%

208

—+— Haufigkeit[Original] —=— Haufigkeit [Random]

370

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Graph Theory

75



Increasing Long-Distance Links in Symphony T
G
" Lower clustering, converge to random
N p L] 4 L]
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Another Example: CAN
G

= Key-space d dimensional Torus
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Increasing Dimensions of CAN
e

= Less clustering, only slight changes
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Common (secondary) Problems with P2P \

X=X

G
" Properties of DHT:

= Random assignment (ID/coordinate) = unequal assignment of key space
= Heterogeneity of nodes, popularity of content
= Dynamic arrival and departure of nodes (churn)...

= Secondary problems:

= response times, recall, precision, availability, load distribution, ...

——"
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Motif-based Optimization of P2P-Substrates
e

= Each node knows its neighborhood (Motif-signature)
= Objectives:
= Optimize overall overlay by optimizing neighborhood!
= One system for all P2P substrates (not derivatives of all DHT...)

= Implement plugin for all DHT:
" [ntercept join messages
= Check local state
= stick to protocol (do nothing) OR: divert from protocol
= Terminate join early (assigning different ID space)
= Drop message
= Trigger re-join from scratch (target area is optimal, max A times)

= Manually construct an overlay topology ,,optimal“ to some metric
= Calculate characteristic motif significance profile (average of motif

signatures)
= Derive locally desired motif signatures
» Feed target motif signature(s) into plugin
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Optimizing a CAN...
o

= Assumption:

= ,CAN is optimal if all nodes are assigned scope of equal size (or *0.5, *2)“
" Directed tetrade motif signature is characteristic for all nodes

" Parametrize Plugin: R S— A—

e . 0.7571 : , s ;
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" Terminate join early 0.251

" Trigger re-join (max d times) IR S— S
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Preliminary Evaluation: Questions asked
e

Implemented as plugin for existing simulation framework (planet
sim)

= Simulation study to check:

1. Does the Motif-based optimization converge to globally desired Motif
significance profile?
2. How good is the overlay after optimization?

= Simulation study:

= Plain simulation of overlay
= CAN vs. Optimized CAN
= Variation of group sizes: 219 — 2 (How well do we balance?)
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Which Global Impact has Local Optimization?
GEEE———

,Does Motif-based optimization converge to global desired
Motif significance profile?“
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Do we enhance the Load-Balancing of CAN?

= Topological changes lead to better balanced allocation / incoming requests

= Check direct environment and optimize to local balance

= Motif-based is one option
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Does it Work With Other P2P Systems (KAD)?
G

= Kademlia:
= Namespace is distributed evenly

= Neighbor selection per XOR-metric (binary tree, connect to k nodes in ,,opposite”
branches)

= Protocol leads to preferential attachment and unbalanced service requests

= Assumption:
= ,KAD is optimal when in-degree is balanced”

= Directed triade motif signature is characteristic

= Plugin-strategy:
= Hide” (drop message, avoid increase of in-degree)
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Significant Motif Profile successfully estimated? )
GEE——
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Is the in-degree balanced?
G

——KAD bucket =3
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Balancing Kad Request Processing

= Same idea for Kad:

= Balance the in-degree

= the same number of requests are expected for all

= Problem: what is the mean? How would it be balanced?
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