
Peer-to-Peer Networks
Practical Exercise 5

Dominik Fischer

P2P Networks Group at TU Darmstadt

22. January 2013



Kademlia Overlay Evaluation

everybody was on time and achieved full point value

each and every time I hope to keep that line

but then the attestations take place. . .



Native Multicast

message sent by one socket,

received by many

introduces as little overhead as possible

by replication packages on demand in routers

utilizes IP addresses with in high values

fixes the implementation to an address type



Implementing Multicast

C programmers depend on their sockopts.

Tack and Sean Walton provide tutorials.

Python largely recycles the C methods

Doug Hellmann has some words about and
it was discussed on Stack Overflow.

Java’s UDPChannel provides a MulticastChannel interface.

The NIO2 primer has an example on slide 14 ff.

.NET also provides uniform interface methods.

A Tutorial by Kelly Elias provides a good start.

http://www.tack.ch/multicast/
http://www.cs.utah.edu/~swalton/Documents/Articles/Multicasting-1.pdf
http://www.doughellmann.com/PyMOTW/socket/multicast.html
http://stackoverflow.com/questions/603852/multicast-in-python
http://javanio.info/filearea/nioserver/WhatsNewNIO2.pdf
http://www.jarloo.com/c-udp-multicasting-tutorial/


Using Multicast

peers can communicate anonymously without knowing

who listens
if anyone listens at all

multicast commands and queries to various peers

peers join groups according to given criteria

peers having data
peers having files
unconnected peers
erroneous peers

and can be controlled at once altogether



Programming Exercise 5

Make an educated guess. . .

complete Kademlia

storing key-value-pairs

retrieving them

FIND VALUE, STORE

data storage in RAM is sufficient

regular timeout and re-publishing of entries

cache when found



Task Considerations

files are dissected into parts

choose a reasonable size
choose a reasonable hash or identity function
smaller files are stored immediate

storing files exemplified

#(name(file)) →


#(part1) → part1
#(part2) → part2

...
...

#(partn) → partn

 content(file)

demonstrate split and reassembly of files



Schedule

20 points to achieve

3 weeks time, last programming task

29. January - theory
5. February - no class
12. February - questions and answers


	Evaluation
	Multicast
	Task

