mirror of
https://github.com/tu-darmstadt-informatik/bsc-thesis.git
synced 2025-12-13 09:55:49 +00:00
correct handin errors
This commit is contained in:
parent
3f2f4574d0
commit
c9deabd231
@ -265,13 +265,14 @@ l_{R}^k = \ell_{reg} (R_k^* - R_k),
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
l_{t}^k = \ell_{reg} (t_k^* - t_k),
|
l_{t}^k = \ell_{reg} (t_k^* - t_k),
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
and
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
l_{p}^k = \ell_{reg} (p_k^* - p_k).
|
l_{p}^k = \ell_{reg} (p_k^* - p_k)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
are the smooth-$\ell_1$ losses for the predicted rotation, translation and pivot,
|
are the smooth-$\ell_1$ losses for the predicted rotation, translation and pivot,
|
||||||
respectively and
|
respectively and
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
l_o^k = \ell_{cls}(o_k, o_k^*).
|
l_o^k = \ell_{cls}(o_k, o_k^*)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
is the (categorical) cross-entropy loss for the predicted classification into moving and non-moving objects.
|
is the (categorical) cross-entropy loss for the predicted classification into moving and non-moving objects.
|
||||||
|
|
||||||
|
|||||||
@ -82,11 +82,16 @@ p_k^* = t_t^k
|
|||||||
and compute the ground truth object motion
|
and compute the ground truth object motion
|
||||||
$\{R_k^*, t_k^*\} \in \mathbf{SE}(3)$ as
|
$\{R_k^*, t_k^*\} \in \mathbf{SE}(3)$ as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
R_k^* = \mathrm{inv}(R_{cam}^*) \cdot R_{t+1}^k \cdot \mathrm{inv}(R_t^k),
|
R_k^* = R_{t+1}^k \cdot R_{cam}^* \cdot \mathrm{inv}(R_t^k),
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
t_k^* = t_{t+1}^{k} - R_k^* \cdot t_t^k.
|
t_k^* = \mathrm{inv}(R_{cam}^*) \cdot t_{t+1}^{k} + t_{cam^{-1}}^* - R_k^* \cdot t_t^k,
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
where
|
||||||
|
\begin{equation}
|
||||||
|
t_{cam^{-1}}^* = t_{t}^{ex} - inv(R_{cam}^*) \cdot t_{t+1}^{ex}.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
As for the camera, we define $o_k^* \in \{ 0, 1 \}$,
|
As for the camera, we define $o_k^* \in \{ 0, 1 \}$,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user